
A Comparison
of

Contract Express
and

DocXpress
Introduction
This document compares the engines underneath the hoods of Contract Express and

DocXpress.

Both engines resolve the same complex problem:

How to establish the relevance of an instance1 of a variable in a marked-up template

document?

but using radically different approaches.

Whereas Contract Express analyses the template document (at compile-time) to establish a

usage expression for each variable, and evaluates (at run-time) that usage expression to

establish its relevance, DocXpress evaluates the whole template document (at run-time)

establishing relevant variables as and when they are encountered.

On the face of it Contract Express would appear to be the more efficient approach because it

does much of its work at compile-time, whereas DocXpress does all of its work at run-time.

Read on!

1 An instance of a variable is a particular repetition of that variable.

Example
The markups employed by Contract Express and DocXpress are very different, but both

accomplish the same three objectives:

• How to define some text that will appear in the assembled document based upon

the evaluation of an expression (a field)

• How to include/exclude a portion of the template document based upon the

evaluation of a boolean expression (a conditional span)

• How to repeat a portion of the template document based upon the evaluation of a

numeric or list expression (a repeated span)

Contract Express uses character-based markup:

[A1 and A2{F1}[Repeat M{F2}[B1 or B2{F3}[Repeat N{F4}]]]]

where:

{F1}, {F2}, {F3} and {F4} are fields

[A1 and A2 ...] and [B1 or B2 ...] are conditional spans

[Repeat M ...] and [Repeat N ...] are repeated spans

DocXpress uses Microsoft Word content controls as markup:

where:

green content controls are fields

blue content controls are conditional spans

pink content controls are repeated spans.

How Contract Express Works
Contract Express analyses the template document at compile-time to establish the usage

expressions for each individual variable.

A usage expression consists of one or more usage contexts because variables may appear

multiple times throughout the template document, sometimes in different contexts.

A single usage context consists of its repetition context and its logical context.

A repetition context consists of zero or more list expressions where each member of the

evaluated list represents an individual repetition.

A logical context is a boolean expression that is evaluated in the repetition context.

For the example above Contract Express establishes at compile-time the following usage

contexts:

Variable Repetition Context Logical Context

A1 A2

A2 A1

F1 A1 and A2

M A1 and A2

F2 1 to M UnRepeated(A1) and UnRepeated(A2)

B1 1 to M UnRepeated(A1) and UnRepeated(A2) and not B2

B2 1 to M UnRepeated(A1) and UnRepeated(A2) and not B1

F3 1 to M UnRepeated(A1) and UnRepeated(A2) and
(B1 or B2)

N 1 to M UnRepeated(A1) and UnRepeated(A2) and
(B1 or B2)

F4 1 to M
1 to N (for each 1 to M)

UnRepeated(UnRepeated(A1)) and
UnRepeated(UnRepeated(A2)) and
(UnRepeated(B1) or UnRepeated(B2))

Conjunction
The logical contexts derived from a conditional span that involves a conjunction such as A1

and A2 states that variable A1 is only relevant if variable A2 does not evaluate to false, and

that variable A2 is only relevant if variable A1 does not evaluate to false.

Disjunction
The logical contexts derived from a conditional span that involves a disjunction such as B1

or B2 states that variable B1 is only relevant if variable B2 does not evaluate to true, and

that variable B2 is only relevant if variable B1 does not evaluate to true.

Repetition
The logical contexts for variables within a repeated span that reference variables outside of

that span use the construct UnRepeated(...)2.

Pros and Cons
The main (and only) pro for this approach is that the work involved in establishing these usage

expressions is all done at compile-time.

There are two very serious cons to this approach:

• Variables that appear next to each other in the template document have separate,

but identical, usage expressions.

Consequently, the same usage expression will be evaluated multiple times with the

same result each time3.

• Usage expressions grow exponentially within nested conditional and repeated spans,

especially those that involve conjunctions or disjunctions.

There are real examples of individual usage contexts that have occupied more than

20 pages when pasted into a Microsoft Word document.

2 Evaluate the expression in the parent repetition context.
3 Reminds me of the definition of madness – repeating the same behavior and expecting a different outcome.

How DocXpress Works
DocXpress has a much simpler model for establishing the relevance of individual variables.

Evaluate the whole template document at run-time by evaluating the expressions that occur

within the marked-up repeated spans, conditional spans, and fields. Whenever the

evaluation of an expression requires the value of an instance of a variable, that variable

instance must be relevant.

This model would be extremely onerous if the whole template document were to be fully

evaluated each and every time the value of any variable was changed, and so a few

optimization techniques are employed.

Firstly, the template document is analysed (effectively compiled) once at the start of run-time

to determine which variables are referenced in repeated spans, which variables are

referenced in conditional spans, and which variables are referenced in fields. The links from

variables back to those spans and fields are established.

Secondly, there are two distinct phases when evaluating the whole template document. The

render phase evaluates the repeated spans, and the instantiation phase uses the rendered

document to evaluate the conditional spans and fields.

When a variable is changed that is referenced in a repeated span, the whole document is re-

rendered and re-instantiated. Such variables, however, are always a tiny minority.

When a variable is changed that is referenced in a conditional span (but not referenced in a

repeated span), each of those rendered spans is re-evaluated and either introduced into the

assembled document, removed from the assembled document, or left unchanged. Such

variables are common but still in the minority.

When a variable is changed that is only referenced in fields, it is just those specific fields that

are re-evaluated. This is often the vast majority of variables.

Performance Comparison
The performance comparison reported here used a variation of the accompanying template

document Viaweb NDA.docx. The main characteristics of this template are typical of real-

world documents, with a mixture of repeated spans (the number of other parties, the

different categories of information that is disclosed), conditional spans (one-way disclosure,

mutual disclosure, etc.), and fields (the agreement date, the number of other parties, the

information disclosed, etc.).

Contract Express performed well up to 10 other parties, reasonably well up to 30 other

parties, and badly or not at all beyond that figure.

DocXpress performed exceedingly well up to 400 other parties, reasonably well up to 4,000

other parties, and badly or not at all beyond that figure.

In addition, because DocXpress is a client-only web application there are no server requests

to update the questionnaire, whereas Contract Express issues a server request for each and

every navigation between questionnaire pages.

It was mentioned in the introduction that, on the face of it, Contract Express would appear to

be the more efficient approach because it does much of its work at compile-time. The actual

performance of DocXpress would suggest otherwise.

